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Scaling of structure functions in homogeneous shear-flow turbulence
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Department of Physics, Graduate School of Chinese Academy of Sciences, P.O. Box 3908, Beijing 100039, China

~Received 7 August 2001; revised manuscript received 12 November 2001; published 7 February 2002!

We apply spectral dynamics and non-Gaussian statistical model of velocity difference to study the scaling of
structure functions in homogeneous shear-flow turbulence. LetLS be the shear length scale andh the viscous
scale. It is found that, whenLS /h is finite, due to a combined effect of viscosity and mean shear, the scaling
deviates from normal scaling, and the deviation increases asLS /h decreases. In the presence of a strong shear
(LS /h,100), the deviation is substantially larger than the prediction of typical intermittency models, in
agreement with recent experiments. AsLS /h→`, the normal scaling is valid in the inertial range where
viscous and shear effects are negligible.
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I. INTRODUCTION

According to Kolmogorov@1#, the fine structure of turbu
lence is described by structure functions. The structure fu
tion of orderp is ^uDur up& or ^Dur

p&, Dur is the longitudinal
velocity difference across a distancer, and^& means a statis
tical average. In the inertial range, where viscous and la
scale effects are negligible, we have scaling law^uDur up&
;r zp or ^Dur

p&;r zp, and zp is the inertial range scaling
exponent of orderp @1#. The Kolmogorov 1941 theory~K41!
predictszp5p/3 ~normal scaling!, but his 1962 theory~K62!
predicts thatz2.2/3 and zp,p/3 if p.3 @1,2#. Strictly
speaking, Kolmogorov’s inertial-range scaling is valid on
in the limit of Rl→`, here Rl is the Taylor-microscale Rey
nolds number. Experiments and numerical simulations
made at finite Rl . For a finite-Rl turbulence, we usejp to
represent the absolute scaling exponent of^uDur up& againstr,
and useSp to represent the relative scaling exponent
^uDur up& against^uDur u3& or DLLL(r )[^Dur

3& by Benzi’s
extended self-similarity~ESS! method@3#. Experiments and
numerical simulations show thatjp andSp deviate fromp/3,
which have been interpreted as evidence against K41 no
scaling based on the assumptionjp5zp and Sp5zp , and
various intermittency models are developed to explain
deviation @2#. Since the finite Reynolds number~FRN! ef-
fects are not negligible, the scaling range observed at exp
mental Rl ~which is called ‘‘inertial range’’ in literature! is
not the real inertial range@4#. In general,jp andSp are flow
dependent as well as Rl dependent, the assumptionjp5zp
and Sp5zp is disputable, and the deviation ofjp and Sp
from p/3 cannot be interpreted as evidence against K41 n
mal scaling@5#. This highlights the issue of K41 and K62.

Recently much interest and effort have been directed
study shear effects on the scaling of structure functions
turbulence~see@6–9#, and references therein!, and it is found
that the deviationujp-p/3u or uSp-p/3u is substantially larger
than the prediction of typical intermittency models of K6
when there is a strong shear. In the case of wall boun
shear-flow turbulence, Benziet al. @9# observed a distinc
violation of the refined similarity hypothesis of K62 togeth
with the simultaneous persistence of scaling laws. Tos
Leveque, and Chavarria@6# pointed out that the large devia
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tion of jp or Sp from p/3 ~substantially larger than the pre
diction of typical intermittency models of K62! is a universal
property of turbulence with a strong shear. How to und
stand the scaling behavior in shear-flow turbulence beco
an important topic of turbulence physics. The shear effe
i.e., the effect of large-scale shear motion on small-scale
tistics of turbulence, is an important ingredient of FRN e
fects, and the study of shear effects is indispensable for
tling the issue of K41 and K62.

In this paper, we apply spectral dynamics and no
Gaussian model of probability density function~PDF! of the
velocity difference to study the scaling of structure functio
in a homogeneous shear-flow turbulence, and the results
given in Figs. 1–5. We find that the large deviation ofjp or
Sp from p/3 can be explained in the framework of K41 no
mal scaling (zp5p/3). Let h be the Kolmogorov scale, an
LS be the shear length scale at which shear and viscous
fects are equal. WhenLS /h is finite, due to a combined
effect of viscosity and mean shear,jp and Sp deviate from
zp5p/3, and the deviation increases asLS /h decreases. In
the presence of a strong shear (LS /h,100), the deviation
ujp-p/3u or uSp-p/3u is larger than the prediction of typica
intermittency models of K62. In the following, we describ
how the results in Figs. 1–5 are derived, and then disc
their physical meaning and some relevant issues.

FIG. 1. 2DLLL(r )/(«r ) vs r /LS for LS /h550, 100, 200, 1000,
and `. LS is shear length scale,h is Kolmogorov scale. ,
Kolmogorov constantK051.2; ¯ K051.5. 4/5 law ~9! corre-
sponds toLS /h5`.
©2002 The American Physical Society01-1
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II. SPECTRAL DYNAMIC EQUATIONS

In a real shear-flow turbulence, shear effects coexist w
other large-scale effects such as nonhomogeneous and
stationary effects. In this paper, we study shear effects o
and neglect the other large-scale effects. For this purpose
study the simplest type of shear-flow turbulence: a homo
neous shear-flow turbulence. Without loss of generality, i
supposed that the mean velocity (U1,0,0) is along thex1
direction and there is a constant mean sheardU1(x2)/dx2 ,
then we have@10#

]E~k!/]t1Q~k!dU1~x2!/dx25T~k!22nk2E~k!, ~1!

Q~k!54pk2@E12#av22pk2@k1]Eii /]k2#av. ~2!

Heren is the kinematic viscosity,Ei j is the spectrum tensor
Eii 5E111E221E33 is its contraction, and@ #av means
Batchelor’s average. In isotropic turbulence, the correlat
and spectrum functions depend on one single scalar o
namely, the distancer or the wave numberk. That is no
longer valid in the anisotropic case. Batchelor suggested
eraging the correlation or spectrum functions over all dir
tions of r or k, and then the resultant average functions

FIG. 2. Structure functions for LS /h5100.
^uDur up&/(n«)p/4, p52 to 7; + + +, 2DLLL(r )/(n«)3/4; ¯, r 5L0 at
which 2DLLL(r ) takes its maximum.

FIG. 3. jp-zp vs p for LS /h550, 120, and̀ . jp is the absolute
scaling exponent,zp5p/3 is the inertial-range scaling exponen
Relative scaling exponentSp has the same behavior asjp when the
ESS range is aroundr 5LS .
03630
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pend onr or k only. Many popular relations of isotropic
turbulence are also valid for these average functions@10#. In
Eq. ~1!, E(k) is the energy spectrum andT(k) is the energy
transfer spectrum. If Kolmogorov’s local isotropy concept
valid, E(k) andT(k) approach quantities of isotropic turbu
lence when Rl is high enough. In a stationary stat
]E(k)/]t50, Eq. ~1! becomes

T~k!5SQ~k!12nk2E~k!, S5dU1~x2!/dx2 . ~3!

The energy input by the mean shearS compensates the en
ergy dissipation,

FIG. 4. Relative scaling exponentSp vs LS /h ~p52, 4, 6, and
8! over two different ESS ranges. , ESS range is 0.316<r /Ls

<3.16; + + +, ESS range is 20<r /h<300.

FIG. 5. Sp /(p/3) vs r /LS for p52, 4, 6, and 8. HereSp is the
local slope defined by Eq.~18!. ~a! LS /h5100; ~b! LS /h51000;
~c! LS /h5104. ¯, r 5L0 at which2DLLL(r ) takes its maximum.
1-2
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SCALING OF STRUCTURE FUNCTIONS IN . . . PHYSICAL REVIEW E65 036301
«52nE
0

`

k2E~k!dk, ~4!

so a statistically stationary turbulence is possible@10#.
The spectral equation~3! implies an energy cascade fro

larger scales to smaller scales, the shear termSQ(k) plays
the role of energy source, and the viscous term plays the
of energy sink. From Eq.~3!, we obtain@1,10#

DLLL~r !52~4/5!«r 1C1F, C56ndDLL~r !/dr,
~5!

F5212SE
0

`

Q~k!@z2 sin~z!13z cos~z!

23 sin~z!#/z5dz, z5kr. ~6!

Here C and F represent viscous and shear effects, resp
tively, DLL(r )5^Dur

2& is the second-order structure fun
tion. In the universal equilibrium range, the shear effects
negligible, Eqs.~3! and ~5! become

T~k!52nk2E~k!, ~7!

DLLL~r !52~4/5!«r 16ndDLL~r !/dr, ~8!

which is the Kolmogorov equation. In the inertial range, bo
viscous and shear terms are negligible, from Eqs.~5! or ~8!
we obtain Kolmogorov’s 4/5 law

DLLL~r !52~4/5!«r or 2DLLL~r !/~«r !50.8. ~9!

III. THIRD-ORDER STRUCTURE FUNCTION
IN SCALING RANGE

The scaling range of a finite-Rl turbulence~for example
observed in experiments and numerical simulations!, which
is usually called ‘‘inertial range’’ in literature, is not the re
inertial range@4#. Now we derive the expression ofDLLL(r )
valid in the scaling range of a homogeneous shear-flow
bulence. Much effort has been made to study the deca
shear effect in small-scale range~see @11#, and references
therein!, and it is found that, the shear stress cospectrum
proportional tok27/3 in the scaling range. Therefore, from
Eqs.~2! and~6!, in the scaling range we obtain~see Ref.@4#!

F/~«r !5CS~r /LS!4/3, ~10!

where CS is a coefficient. It is easy to show that, in th
scaling range, we have~see Ref.@4#!

C/~«r !5CV~r /h!24/3, CV5~324/55!G~4/3!KO ,
~11!

whereKO is the Kolmogorov constant andG is the gamma
function. By definition, viscous termC and shear termF are
equal at the shear length scaleLS , so we have

CS5CV~h/LS!4/35~324/55!G~4/3!KO~h/LS!4/3. ~12!

In the scaling range, by Eqs.~10! and~11!, Eq. ~5! becomes
03630
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2DLLL~r !/~«r !50.82CV~r /h!24/32CS~r /LS!4/3.
~13!

A plot of 2DLLL(r )/(«r ) vs r /LS is given in Fig. 1, which
clearly shows that Kolmogorov’s 4/5 law~9! is valid only in
the limit of LS /h→`. WhenLS /h is finite,DLLL(r )/(«r ) is
not a constant, so the scalingDLLL(r );r is not exact. By
using Eqs.~11!–~13!, we find that2DLLL(r )/(«r ) attains its
maximum atr 5LS , and the maximum is

@2DLLL~r !/~«r !#max50.822CV~LS /h!24/3. ~14!

Obviously the scaling range is aroundr 5LS , where
2DLLL(r )/(«r ) changes withr slowly, and the scaling
DLLL(r );r is approximately valid.

According to Fig. 1 and Eq.~14!, strictly speaking, Kol-
mogorov’s 4/5 law~9! is not valid in the scaling range
around r 5LS when LS /h is finite. Therefore, the scaling
range~which is usually called ‘‘inertial range’’ in literature!
is not the real inertial range. Only in the limit ofLS /h
→`, the scaling range becomes the inertial range wh
viscous and shear effects are absent and Kolmogorov’s
law ~9! is valid.

IV. CALCULATE STRUCTURE FUNCTIONS
BY NON-GAUSSIAN STATISTICAL MODEL

With some modifications, the mathematical procedure
veloped in Ref.@5# can be applied here to calculate structu
function ^uDur up&. The main modification is that her
DLLL(r ) should satisfy Eq.~13! in the scaling range aroun
r 5Ls . The outline of the mathematical procedure of calc
lating ^uDur up& is as follows. For a givenLS /h, first we use
~7!, ~8!, and~13! to determineDLL(r ) andDLLL(r ), then by
using a non-Gaussian PDF model of the velocity differen
we calculate high-order structure functions. A systematic j
tification of the non-Gaussian PDF model of velocity diffe
ence is given in Ref.@5#. Let P(x) be the PDF of normalized
velocity differencex5uDur u/DLL(r )1/2, and we have

^uDur up&5DLL~r !p/2^xp&, ^xp&5E
0

`

xpP~x!dx. ~15!

The tail of P(x) has the form of stretched exponentials@5#,

P~x!5P0 exp~2Bxm! while x.2, ~16!

herem is the stretching exponent. Asr decreases from the
large scale to the viscous scale,m decreases from 2 to aroun
0.5. For smallr, P(x) is far from Gaussian, and intersec
with Gaussian PDF

PG~x!5~2/p!1/2exp~2x2/2!, 0<x,`

at two pointsx1 and x2 . HenceP(x1)5PG(x1) and P(x2)
5PG(x2), x1,1 and 2,x2 @5#. Let P(x)5exp@2f(x)#, f (x)
is fitted by low-order polynomials over the narrow interva
0<x<x1 andx1<x<x2 . The coefficients of these polyno
mials are determined by the cubic spline method and so
conditions atx50, so P(x) are completely determined b
1-3



itio

i

tio
.

-
xp

he

e

t

he
ia

e

o

d
.
S

he

-

ear

d

al

in-

ous

li-

eous

e

e at

f-
o-
4

cts

-

ta

he

ien
lin-

ely
e

he

,

J. QIAN PHYSICAL REVIEW E 65 036301
the four parametersB, m, x1 , andx2 , which depend on the
distancer. The r dependence ofB, m, x1 , andx2 are deter-
mined by the following four conditions:̂x0&51, ^x2&51,
^x3&5^uDur u3&/DLL(r )3/2, and ^x6&5C^x4&a. Here C is a
coefficient, and the exponenta is around 2.8@5#. By the
relation ^uDur u3&;DLLL(r ) that is valid in the dissipation
range and the scaling range, and the asymptotic cond
^uDur u3&→2(2/p)1/2DLL(r )3/2 as r→`, we determine
^uDur u3& from DLL(r ) and DLLL(r ). While the P(x) is de-
termined, by using Eq.~15! we calculate^uDur up&. As an
illustration, Fig. 2 shows the structure functions obtained
this way for the case ofLS /h5100. In order to save the
reader from having to look up previous papers, a descrip
of the non-Gaussian PDF model is given in the Appendix

V. SCALING EXPONENTS. LONG-RANGE VISCOUS
AND SHEAR EFFECTS

So long aŝ uDur up& is obtained by the mathematical pro
cedure described above, we can calculate the scaling e
nents jp and Sp . The log-log plot of ^uDur up& against r
within the scaling range is fitted by a straight line using t
least-square method, and its slope is the absolute scaling
ponentjp . While LS /h is finite, the scalinĝ uDur up&;r jp is
not exact, andjp depend on how to define the scaling rang
In this paper, the scaling ranger 1<r<r 2 is around the maxi-
mum point of2DLLL(r )/(«r ), and is defined as the wides
range satisfying the following conditions:

absolute scaling exponent ofDLLL~r ! over

r 1<r<r 2 is equal to 1, ~17a!

2DLLL~r !/«r>C@2DLLL~r !/«r #max

when r 1<r<r 2 , C,1. ~17b!

The smallerC is, the wider the scaling range is, and t
worse the quality of the scaling is. Figure 3 shows the dev
tion of absolute scaling exponentjp from inertial-range scal-
ing exponentzp for LS /h550, 120, and̀ , and the ‘‘error
bar’’ corresponds toC changing from 0.9 to 0.9999. Sinc
^uDur u3&;DLLL(r ) in the scaling ranger 1<r<r 2 , we have
j351 over the range, so the relative scaling exponent
^uDur up& against̂ uDur u3& @or 2DLLL(r )# over the range will
have the same behavior asjp shown in Fig. 3. The relative
scaling exponentSp is determined by Benzi’s ESS metho
@3#, and depends upon the limits of the ESS range. In Fig
we showSp over two different ESS ranges. The first ES
range is aroundr 5Ls (0.316<r /Ls<3.16), the resultantSp
approach the inertial-range scaling exponentzp5p/3 as
LS /h→`. The second ESS range is 20<r /h<300, which is
suggested by Arneodoet al. @12#, and Sp deviates fromzp
5p/3 even in the limit ofLS /h→`.

It is interesting to explore the physical meaning of t
results of Figs. 3 and 4. For this purpose, the local slope
the log-log plot of^uDur up& against2DLLL(r ),

Sp5d log10~^uDur up&!/d log10@2DLLL~r !#, ~18!
03630
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is shown in Fig. 5 forLS /h5102, 103, and 104. When
r /LS→0, 2DLLL(r );r 3, and^uDur up&;r p, so Sp→p/3 as
r /LS→0. When r /LS→`, ^uDur up& approaches a positive
constant, but2DLLL(r )→0, soSp→` as r→L0 as shown
in Fig. 5, hereL0 is ther value at which2DLLL(r ) takes its
maximum. We haveL0 /h;(LS /h)2 and Rl;(L0 /h)2/3. As
shown in Fig. 5~c!, the viscous effect increasesS2 and de-
creasesSp (p.3), giving rise to a positive bump forS2 and
negative bumps forSp (p.3) over the range 1,r /h
,104. Similarly the shear effect increasesS2 and decreases
Sp (p.3) in the ranger /L0,0.1. Figure 5 shows that vis
cous and shear effects are of long range. WhenLS /h is
finite, the range of viscous effect and the range of sh
effect penetrate into each other@the penetration is obvious in
Figs. 5~a! and 5~b!#, and the combination of the viscous an
shear effects leads to an increase inS2 and a decrease inSp
(p.3) in the scaling range aroundr 5LS . The scaling ex-
ponentsjp andSp are equal to some mean value of the loc
slope Sp . Hence, the deviation ofjp and Sp from the
inertial-range scaling exponentzp5p/3 shown in Figs. 3 and
4 is a combined effect of viscosity and mean shear, and
creases asLS /h decreases.

VI. DISCUSSION AND SUMMARY

As mentioned above, Fig. 5 clearly shows that the visc
effect is not negligible in the range 20<r /h<300 due to it
being of long range. This explain why theSp over range
20<r /h<300 deviates fromzp5p/3 even in the limit of
LS /h→` ~see Fig. 4!: although the shear effects is neg
gible in the range 20<r /h<300 while LS /h→`, the vis-
cous effect cannot be neglected. The so-called homogen
isotropic turbulence~HIT! data of Sp reported in Ref.@3#
deviate substantially fromp/3, and do not correspond to th
limit case of LS /h→` ~L0 /h→` and Rl→`). In these
HIT measurements, although the mean shear is negligibl
measurement points~at the axis of a jet flow or in the core
region of a wall turbulence!, there are other large-scale e
fects due to the macrostructure of the flows being not hom
geneous and stationary, and the ESS range is within
,r /h,103 @3,12#, where the viscous and large-scale effe
are not negligible. Hence these HIT data ofSp deviate sub-
stantially from the inertial-range scaling exponentzp5p/3
@5#.

Recently, interesting work@13# has been done to disen
tanglezp from effects of large-scale shear motion. Aradet al.
@13# apply an SO~3! symmetry group method to analyze da
of atmospheric boundary layer~ABL ! flow at Rl5104. They
adopt the assumption of cylindrical symmetry about t
mean-wind direction and obtainz250.69 if z2 is equal to
their leading scaling exponent in the isotropic sector. Kur
et al. @13# apply the same method but do not assume cy
drical symmetry, and obtainz250.68. The resultz250.68 of
Kurien et al. ~smaller than 0.69 of Aradet al.! is nearer the
K41 value 0.67 than the K62 value 0.70. They have larg
disregarded the inhomogeneity of ABL flow. Supposing w
know how to take into account the inhomogeneity of t
ABL flow and the ABL flow is at higher Rl5106, it is not
absurd to expect thatz250.67 will possibly be obtained
1-4
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which favors Kolmogorov’s 2/3 law rather than the K6
anomalous scaling (z250.70).

Finally we summarize. We apply spectral dynamics a
non-Gaussian PDF model of velocity difference to study
scaling of structure functions in a homogeneous shear-fl
turbulence. From Fig. 5, it is clear that viscous and sh
effects are of long range. WhenLS /h is finite, due to a
combined effect of viscosity and mean shear, Kolmogoro
4/5 law ~9! is not valid in the scaling range aroundr 5LS
~see Fig. 1!, and the scaling exponentsjp ~or Sp! deviate
from the inertial-range scaling exponentzp5p/3 ~see Figs. 3
and 4!. The deviationujp-p/3u or uSp-p/3u increases asLS /h
decreases, and is larger than the prediction of typical in
mittency models of K62 while there is a strong she
(LS /h,100). As LS /h→`, the scaling range aroundr
5LS becomes the inertial range, where Kolmogorov’s 4
law ~9! and K41 normal scaling (zp5p/3) are valid. There-
fore, we demonstrate that the anomalous scaling, observe
a shear-flow turbulence as well as in HIT, can be explain
in the framework of K41 normal scaling (zp5p/3), without
appealing to K62 theory. This author do not intend to rev
K41 in its entirety, so we do not use the simple dimensio
argument of K41 to derive the inertial-range scaling exp
nents. In this author’s opinion, the pearls of K41 are K
mogorov’s 4/5 law forDLLL(r ) and 2/3 law forDLL(r ) ~or
25/3 law for energy spectrum!, which are valid in the rea
inertial range of homogeneous isotropic turbulence. The
law is an exact statistical result of Navier-Stokes~NS! equa-
tions @1#, and the25/3 law of energy spectrum can be d
rived from NS equations by reasonable statistical clos
methods~@14#, and references therein!. Based upon the 4/5
law and the25/3 law, we apply the non-Gaussian PD
model of velocity difference to obtain high-order scaling e
ponents@5#.
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APPENDIX: NON-GAUSSIAN PROBABILITY DENSITY
FUNCTION „PDF… MODEL

SupposeDLL(r ) and DLLL(r ) have been determined b
solving spectral dynamic equations or other methods@5#. If
P(x) is known, we can use Eq.~15! to calculate the structure
function ^uDur up&. Although we are not able to drive th
expression ofP(x) from the Navier-Stokes equations, w
know the basic properties ofP(x), which can be applied to
derive the form ofP(x). The tail of P(x) can be well fitted
by stretched exponentials of the form@15#,

P~x!5P0 exp~2Bxm! while x.2, ~A1!

and the parametersP0 , B, and m are functions ofr. The
stretching exponentm decreases from 2 to around 0.5 as t
distancer decreases from the large scaleL to the Kolmog-
orov scaleh. The PDF of the absolute value of a Gauss
random variable is
03630
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PG~x!5~2/p!1/2exp~2x2/2! 0<x,`. ~A2!

By the definition ofP(x) andPG(x), we have

E
0

`

P~x!dx5E
0

`

PG~x!dx51 ~A3!

and E
0

`

x2P~x!dx5E
0

`

x2PG~x!dx51. ~A4!

When r is in the small-scale range, theP(x) is far from
Gaussian, having a shape characteristic of a strongly in
mittent random variable: theP(x) of very smallx and very
largex is considerably greater than the corresponding Gau
ian PG(x), while theP(x) of intermediatex is smaller than
PG(x). HenceP(x) andPG(x) intersect at two pointsx1 and
x2 ,

P~x1!5PG~x1! and P~x2!5PG~x2!. ~A5!

Our numerical calculations indicate thatx1,1 and 2,x2
,3, which is in agreement with experimental data@15#. By
Eqs. ~A2! and ~A5!, the parameterP0 in ~A1! can be ex-
pressed in terms ofx2 , B, andm,

P05~2/p!1/2exp~Bx2
m2x2

2/2!. ~A6!

When the four parametersx1 , x2 , B, andm in Eqs.~A1! and
~A5! are known, theP(x) of large x (x>x2.2) can be
calculated by using Eqs.~A1! and ~A6!, and theP(x) of
small x (x,x2) can be determined by proper boundary co
dition atx50 and the mathematical conditions of continui
and smoothness.

Let f (x)52 ln@P(x)#, f (x) changes withx much slower
than P(x). SinceP(x) should become the stretching exp
nentials~A1! for largex, we have

P~x!5exp@2 f ~x!#, ~A7!

f ~x!52 ln~P0!1Bxm52 ln@~2/p!1/2#1x2
2/2

1B~xm2x2
m! if x>x2 . ~A8!

Hence we only need to fitP(x) or f (x) over the interval 0
<x<x2 . In order to reduce the fitting error, we divide th
interval 0<x<x2 into two smaller subintervals, i.e., 0<x
<x1 andx1<x<x2 . Sincef (x) change withx smoothly and
slowly, it is reasonable to use a low-order polynomial to
f (x) over the narrow intervals 0<x<x1 andx1<x<x2 , so
we have

f ~x!5A01A1x1A2x21A3x3 if x1<x<x2 , ~A9!

f ~x!5B01B1x1B2x21B3x3 if 0<x<x1 . ~A10!

P(x) and f (x) are continuous and smooth atx1 and x2 .
Following the cubic spline method of applied mathemati
by using Eq.~A5! and some proper boundary condition
x50, the coefficientsAi andBi ( i 50,1,2,3) in Eqs.~A9! and
~A10! can be calculated so long as the parametersB, m, x1 ,
and x2 are known. Therefore, theP(x) have four indepen-
1-5
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dent parametersB, m, x1 , andx2 only, other parametersAi
andBi ( i 50,1,2,3) can be expressed in terms of them.

Various boundary condition~BC! at x50 have been tried
and compared. Three typical boundary conditions are

B350 and no BC is needed atx50, ~A11a!

d f~x!/dx50 at x50, ~A11b!

P~0! or f ~0! is given by some empirical formula.
~A11c!

By using experimental data of Tabelinget al. @15#, it is easy
to determine howf (0) and m change withr, and then to
obtain the empirical formula of~A11c!. Our numerical cal-
culations show that different boundary conditions lead to
same behavior of the high-order scaling exponents~see Ref.
@5#!.

When the four independent parametersB, m, x1 , andx2
are determined, we can use Eq.~15! to calculate the structure
function ^uDur up&. Four independent conditions are need
to determine the four parametersB, m, x1 , andx2 . We al-
ready have two conditions~A3! and~A4!, we need two more
conditions. The third condition is

^uDur u3&/DLL~r !3/25^x3&5E
0

`

x3P~x!dx. ~A12!

In the scaling rangeh!r !L of finite- Rl turbulence,
^uDur up&;r jp, so we have
,

li

et

ys

03630
e

d

^xn&5C^xm&a~n,m!, x5uDur u/DLL~r !1/2, ~A13!

jn2nj2/25a~n,m!~jm2mj2/2!. ~A14!

HereC is a coefficient. For example, in the case ofn56 and
m54, the exponenta~6, 4! is around 2.8. Whenr approaches
the large scaleL, the P(x) approaches the Gaussia
PG(x), and ^xm& approachesG(m)[*0

`xmPG(x)dx, G(3)
52(2/p)1/2, G(4)53, G(5)58(2/p)1/2, G(6)515, and so
on. The stretching exponentm is equal to 2 for the Gaussia
PG(x). A convenient way of determining the coefficientC in
~A13! is by the requirement that̂xn&→G(n) and ^xm&
→G(m) asm→2. In fact, the behavior of scaling exponen
does depend upon how to determineC, so we can choose a
convenient way. With a particular choice of~n,m!, for ex-
ample (n,m)5(6,4), Eq.~A13! is the fourth condition. The
four conditions~A3!, ~A4!, ~A12!, and ~A13! are used to
determined the four independent parametersB, m, x1 , andx2
of the P(x). In this way, we can determine how theP(x)
changes with the distancer for any given Rl , so long as we
know the second and third structure functionsDLL(r ) and
^uDur u3&. For more topics of the non-Gaussian PDF mod
e.g. how to determinêx3&[^uDur u3&/DLL(r )3/2 in third con-
dition ~A12!, the consistency problem of different choices
~n,m! in ~A13!, and the validity of fourth condition~A13!
over the whole range 0.5<m<2 due to the important prop
erty of general similarity of the PDF model, please see@5#.
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